设为首页 | 加入收藏
中正区地方资讯
您当前位置:主页 > 科技前沿 >

3D车道线检测:Gen-LaneNet_科技频道_东方资讯

发布日期:2020-06-03 06:05   来源:未知   阅读:

01.摘要

提出了一种广义的、可扩展的方法,称为Gen-LaneNet,用于从单个图像中检测3D车道。该方法受到最新最先进的3D LaneNet的启发,是一个统一的框架,可在单个网络中解决图像编码、特征空间变换和3D车道预测。这个设计方案复杂度为Gen-LaneNet两倍。首先,在一个新的坐标系中引入一种新的几何引导车道锚定表示,并应用特定的几何变换直接从网络输出中计算出真实的三维车道点。将车道点与新坐标系中的基础俯视图特征对齐对于处理不熟悉场景的通用方法至关重要。其次,提出了一个可扩展的两阶段框架,该框架将图像分割子网和几何编码子网的学习分离开来。与3D-LaneNet相比,本文提出的Gen-LaneNet大大减少了在实际应用中实现稳健解决方案所需的3D车道标签数量。此外,还发布了一个新的合成数据集及其构建策略,以鼓励开发和评估三维车道检测方法。在实验中,进行了广泛的消融研究,以证实所提出的Gen-LaneNet在平均精度(AP)和F评分方面明显优于3D-LaneNet。

02.论文主要创新点

在新的坐标系中引入了一种新的几何导向车道锚定表示设计,并应用特定的几何变换直接从网络输出计算出真实的三维车道点。将锚与俯视图特征对齐,可推广到未观察到的场景。提出了一个可扩展的两阶段框架,允许图像分割子网和几何编码子网的独立学习,这大大减少了学习所需的3D标签的数量。得益于廉价的二维数据,昂贵的三维标签局限于某些视觉变化,两阶段框架优于端到端学习框架。最后,提出了一个具有丰富视觉变化的高逼真度图像合成数据集,为三维车道检测的发展和评价服务。在实验中,进行了广泛的消融研究,以证实LaneNet基因在AP和F评分方面显著优于先前的最新水平[6],在一些测试集中高达13%。

03.Gen-LaneNet

友情链接:

Power by DedeCms